- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
A new finite element method with discontinuous approximation is introduced for solving second order elliptic problem. Since this method combines the features of both conforming finite element method and discontinuous Galerkin (DG) method, we call it conforming DG method. While using DG finite element space, this conforming DG method maintains the features of the conforming finite element method such as simple formulation and strong enforcement of boundary condition. Therefore, this finite element method has the flexibility of using discontinuous approximation and simplicity in formulation of the conforming finite element method. Error estimates of optimal order are established for the corresponding discontinuous finite element approximation in both a discrete $H$1 norm and the $L$2 norm. Numerical results are presented to confirm the theory.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/13643.html} }A new finite element method with discontinuous approximation is introduced for solving second order elliptic problem. Since this method combines the features of both conforming finite element method and discontinuous Galerkin (DG) method, we call it conforming DG method. While using DG finite element space, this conforming DG method maintains the features of the conforming finite element method such as simple formulation and strong enforcement of boundary condition. Therefore, this finite element method has the flexibility of using discontinuous approximation and simplicity in formulation of the conforming finite element method. Error estimates of optimal order are established for the corresponding discontinuous finite element approximation in both a discrete $H$1 norm and the $L$2 norm. Numerical results are presented to confirm the theory.