- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
This paper investigates the long time stability behavior of multiphysics flow problems, namely the Navier-Stokes equations, natural convection and double-diffusive convection equations with an extrapolated blended BDF time-stepping scheme. This scheme combines the two-step BDF and three-step BDF time stepping schemes. We prove unconditional long time stability theorems for each of these flow systems. Various numerical tests are given for large time step sizes in long time intervals in order to support theoretical results.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/13638.html} }This paper investigates the long time stability behavior of multiphysics flow problems, namely the Navier-Stokes equations, natural convection and double-diffusive convection equations with an extrapolated blended BDF time-stepping scheme. This scheme combines the two-step BDF and three-step BDF time stepping schemes. We prove unconditional long time stability theorems for each of these flow systems. Various numerical tests are given for large time step sizes in long time intervals in order to support theoretical results.