- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
Partial differential equations (PDE) often involve parameters, such as viscosity or density. An analysis of the PDE may involve considering a large range of parameter values, as occurs in uncertainty quantification, control and optimization, inference, and several statistical techniques. The solution for even a single case may be quite expensive; whereas parallel computing may be applied, this reduces the total elapsed time but not the total computational effort. In the case of flows governed by the Navier-Stokes equations, a method has been devised for computing an ensemble of solutions. Recently, a reduced-order model derived from a proper orthogonal decomposition (POD) approach was incorporated into a first-order accurate in time version of the ensemble algorithm. In this work, we expand on that work by incorporating the POD reduced order model into a second-order accurate ensemble algorithm. Stability and convergence results for this method are updated to account for the POD/ROM approach. Numerical experiments illustrate the accuracy and efficiency of the new approach.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/12534.html} }Partial differential equations (PDE) often involve parameters, such as viscosity or density. An analysis of the PDE may involve considering a large range of parameter values, as occurs in uncertainty quantification, control and optimization, inference, and several statistical techniques. The solution for even a single case may be quite expensive; whereas parallel computing may be applied, this reduces the total elapsed time but not the total computational effort. In the case of flows governed by the Navier-Stokes equations, a method has been devised for computing an ensemble of solutions. Recently, a reduced-order model derived from a proper orthogonal decomposition (POD) approach was incorporated into a first-order accurate in time version of the ensemble algorithm. In this work, we expand on that work by incorporating the POD reduced order model into a second-order accurate ensemble algorithm. Stability and convergence results for this method are updated to account for the POD/ROM approach. Numerical experiments illustrate the accuracy and efficiency of the new approach.