- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
A piecewise smooth numerical approximation should be in some sense as smooth as its target function in order to have the optimal order of approximation measured in Sobolev norms. In the context of discontinuous finite element approximation, that means the shape function needs to be numerically smooth in the interiors as well as across the interfaces of elements. In previous papers [2, 8] we defined the concept of numerical smoothness and stated the principle: numerical smoothness is necessary for optimal order convergence. We proved this principle for discontinuous piecewise polynomials on $\mathbb{R}^n$, $1 ≤ n ≤ 3$. In this paper, we generalize it to include discontinuous piecewise non-polynomial functions, e.g., rational functions, on quadrilateral subdivisions whose pullbacks are polynomials such as bilinears, bicubics and so on.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/12522.html} }A piecewise smooth numerical approximation should be in some sense as smooth as its target function in order to have the optimal order of approximation measured in Sobolev norms. In the context of discontinuous finite element approximation, that means the shape function needs to be numerically smooth in the interiors as well as across the interfaces of elements. In previous papers [2, 8] we defined the concept of numerical smoothness and stated the principle: numerical smoothness is necessary for optimal order convergence. We proved this principle for discontinuous piecewise polynomials on $\mathbb{R}^n$, $1 ≤ n ≤ 3$. In this paper, we generalize it to include discontinuous piecewise non-polynomial functions, e.g., rational functions, on quadrilateral subdivisions whose pullbacks are polynomials such as bilinears, bicubics and so on.