arrow
Volume 15, Issue 3
An Approximate Algorithm to Solve Linear Systems by Matrix with Off-Diagonal Exponential Decay Entries

Qianshun Chang, Yanping Lin & Shuzhan Xu

Int. J. Numer. Anal. Mod., 15 (2018), pp. 340-352.

Published online: 2018-03

Export citation
  • Abstract

We present an approximate algorithm to solve only one variable out of a linear system defined by a matrix with off-diagonal exponential decay entries (including the practically most important class of band limited matrices) via a sub-linear system. This approach thus enables us to solve any subset of solution variables. Parallel implementation of such approximate schemes for every variable enables us to solve the linear system with computational time independent of the matrix size.

  • AMS Subject Headings

15XX, 66XX.

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address

qschang@amss.ac.cn (Qianshun Chang)

yanping.lin@polyu.edu.hk (Yanping Lin)

xushuzhan1965@163.com (Shuzhan Xu)

  • BibTex
  • RIS
  • TXT
@Article{IJNAM-15-340, author = {Chang , QianshunLin , Yanping and Xu , Shuzhan}, title = {An Approximate Algorithm to Solve Linear Systems by Matrix with Off-Diagonal Exponential Decay Entries}, journal = {International Journal of Numerical Analysis and Modeling}, year = {2018}, volume = {15}, number = {3}, pages = {340--352}, abstract = {

We present an approximate algorithm to solve only one variable out of a linear system defined by a matrix with off-diagonal exponential decay entries (including the practically most important class of band limited matrices) via a sub-linear system. This approach thus enables us to solve any subset of solution variables. Parallel implementation of such approximate schemes for every variable enables us to solve the linear system with computational time independent of the matrix size.

}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/12519.html} }
TY - JOUR T1 - An Approximate Algorithm to Solve Linear Systems by Matrix with Off-Diagonal Exponential Decay Entries AU - Chang , Qianshun AU - Lin , Yanping AU - Xu , Shuzhan JO - International Journal of Numerical Analysis and Modeling VL - 3 SP - 340 EP - 352 PY - 2018 DA - 2018/03 SN - 15 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/ijnam/12519.html KW - Linear equation, numerical solution, sub-linear system, decomposition. AB -

We present an approximate algorithm to solve only one variable out of a linear system defined by a matrix with off-diagonal exponential decay entries (including the practically most important class of band limited matrices) via a sub-linear system. This approach thus enables us to solve any subset of solution variables. Parallel implementation of such approximate schemes for every variable enables us to solve the linear system with computational time independent of the matrix size.

Chang , QianshunLin , Yanping and Xu , Shuzhan. (2018). An Approximate Algorithm to Solve Linear Systems by Matrix with Off-Diagonal Exponential Decay Entries. International Journal of Numerical Analysis and Modeling. 15 (3). 340-352. doi:
Copy to clipboard
The citation has been copied to your clipboard