- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We present an approximate algorithm to solve only one variable out of a linear system defined by a matrix with off-diagonal exponential decay entries (including the practically most important class of band limited matrices) via a sub-linear system. This approach thus enables us to solve any subset of solution variables. Parallel implementation of such approximate schemes for every variable enables us to solve the linear system with computational time independent of the matrix size.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/12519.html} }We present an approximate algorithm to solve only one variable out of a linear system defined by a matrix with off-diagonal exponential decay entries (including the practically most important class of band limited matrices) via a sub-linear system. This approach thus enables us to solve any subset of solution variables. Parallel implementation of such approximate schemes for every variable enables us to solve the linear system with computational time independent of the matrix size.