- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, an $hp$ hybridizable weak Galerkin ($hp$-HWG) method is introduced to solve the Helmholtz equation with large wave number in two and three dimensions. By choosing a specific parameter and using the duality argument, we prove that the proposed method is stable under certain mesh constraint. Error estimate is obtained by using the stability analysis and the duality argument. Several numerical results are provided to confirm our theoretical results.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/10059.html} }In this paper, an $hp$ hybridizable weak Galerkin ($hp$-HWG) method is introduced to solve the Helmholtz equation with large wave number in two and three dimensions. By choosing a specific parameter and using the duality argument, we prove that the proposed method is stable under certain mesh constraint. Error estimate is obtained by using the stability analysis and the duality argument. Several numerical results are provided to confirm our theoretical results.