- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, a nonuniform size modified Poisson-Boltzmann equation (SMPBE) for a protein in a solvent with multiple ionic species in distinct ionic sizes is derived by using a new electrostatic free energy functional and solution decomposition techniques. It is then proved to have a unique solution, and the solution satisfies a system consisting of nonlinear algebraic equations and one Poisson dielectric interface problem. To solve it numerically, two new finite element iterative schemes are proposed by using nonlinear successive over-relaxation techniques, along with an improved uniform SMPBE for generating initial iterates. Furthermore, they are programmed in Python and Fortran as a software package for solving the nonuniform SMPBE, and numerically tested on a Born ball test model and a protein in a sodium chloride solution and a sodium chloride and potassium chloride solution. Numerical results confirm the convergence of the two new iterative schemes and demonstrate the high performance of the new software package.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/10056.html} }In this paper, a nonuniform size modified Poisson-Boltzmann equation (SMPBE) for a protein in a solvent with multiple ionic species in distinct ionic sizes is derived by using a new electrostatic free energy functional and solution decomposition techniques. It is then proved to have a unique solution, and the solution satisfies a system consisting of nonlinear algebraic equations and one Poisson dielectric interface problem. To solve it numerically, two new finite element iterative schemes are proposed by using nonlinear successive over-relaxation techniques, along with an improved uniform SMPBE for generating initial iterates. Furthermore, they are programmed in Python and Fortran as a software package for solving the nonuniform SMPBE, and numerically tested on a Born ball test model and a protein in a sodium chloride solution and a sodium chloride and potassium chloride solution. Numerical results confirm the convergence of the two new iterative schemes and demonstrate the high performance of the new software package.