- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, we investigate a stochastic spline-collocation approximation scheme for an optimal control problem governed by an elliptic PDE with random field coefficients. We obtain the necessary and sufficient optimality conditions for the optimal control problem and establish a scheme to approximate the optimality system through the discretization with respect to the spatial space by finite elements method and the probability space by stochastic spline-collocation method. We further investigate Smolyak approximation schemes, which are effective collocation strategies for smooth problems that depend on a moderately large number of random variables. For more general control problems where the state may be non-smooth with respect to the random variables in some areas, we adopt a domain decomposition strategy to partition the random space into smooth and non-smooth parts and then apply Smolyak scheme and spline approximation respectively. A priori error estimates are derived for the state, the co-state and the control variables. Numerical examples are presented to illustrate our theoretical results.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/10053.html} }In this paper, we investigate a stochastic spline-collocation approximation scheme for an optimal control problem governed by an elliptic PDE with random field coefficients. We obtain the necessary and sufficient optimality conditions for the optimal control problem and establish a scheme to approximate the optimality system through the discretization with respect to the spatial space by finite elements method and the probability space by stochastic spline-collocation method. We further investigate Smolyak approximation schemes, which are effective collocation strategies for smooth problems that depend on a moderately large number of random variables. For more general control problems where the state may be non-smooth with respect to the random variables in some areas, we adopt a domain decomposition strategy to partition the random space into smooth and non-smooth parts and then apply Smolyak scheme and spline approximation respectively. A priori error estimates are derived for the state, the co-state and the control variables. Numerical examples are presented to illustrate our theoretical results.