- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Commutators of Complex Symmetric Operators
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMR-41-59,
author = {Dou , RuiRuan , Xiaolong and Zhu , Sen},
title = {Commutators of Complex Symmetric Operators},
journal = {Communications in Mathematical Research },
year = {2025},
volume = {41},
number = {1},
pages = {59--68},
abstract = {
Let $C$ be a conjugation on a separable complex Hilbert space $\mathcal{H}.$ An operator $T$ on $\mathcal{H}$ is said to be $C$-symmetric if $CTC = T^∗,$ and $T$ is said to be $C$-skew symmetric if $CTC=−T^∗$. It is proved in this paper that each $C$-skew symmetric operator can be written as the sum of two commutators of $C$-symmetric operators.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2024-0053}, url = {http://global-sci.org/intro/article_detail/cmr/23931.html} }
TY - JOUR
T1 - Commutators of Complex Symmetric Operators
AU - Dou , Rui
AU - Ruan , Xiaolong
AU - Zhu , Sen
JO - Communications in Mathematical Research
VL - 1
SP - 59
EP - 68
PY - 2025
DA - 2025/03
SN - 41
DO - http://doi.org/10.4208/cmr.2024-0053
UR - https://global-sci.org/intro/article_detail/cmr/23931.html
KW - Complex symmetric operators, commutators, skew symmetric operators.
AB -
Let $C$ be a conjugation on a separable complex Hilbert space $\mathcal{H}.$ An operator $T$ on $\mathcal{H}$ is said to be $C$-symmetric if $CTC = T^∗,$ and $T$ is said to be $C$-skew symmetric if $CTC=−T^∗$. It is proved in this paper that each $C$-skew symmetric operator can be written as the sum of two commutators of $C$-symmetric operators.
Dou , RuiRuan , Xiaolong and Zhu , Sen. (2025). Commutators of Complex Symmetric Operators.
Communications in Mathematical Research . 41 (1).
59-68.
doi:10.4208/cmr.2024-0053
Copy to clipboard