TY - JOUR T1 - Commutators of Complex Symmetric Operators AU - Dou , Rui AU - Ruan , Xiaolong AU - Zhu , Sen JO - Communications in Mathematical Research VL - 1 SP - 59 EP - 68 PY - 2025 DA - 2025/03 SN - 41 DO - http://doi.org/10.4208/cmr.2024-0053 UR - https://global-sci.org/intro/article_detail/cmr/23931.html KW - Complex symmetric operators, commutators, skew symmetric operators. AB -

Let $C$ be a conjugation on a separable complex Hilbert space $\mathcal{H}.$ An operator $T$ on $\mathcal{H}$ is said to be $C$-symmetric if $CTC = T^∗,$ and $T$ is said to be $C$-skew symmetric if $CTC=−T^∗$. It is proved in this paper that each $C$-skew symmetric operator can be written as the sum of two commutators of $C$-symmetric operators.