Commun. Math. Res., 32 (2016), pp. 375-382.
Published online: 2021-05
Cited by
- BibTex
- RIS
- TXT
For a handlebody $H$ with $∂H = S$, let $F ⊂ S$ be an essential connected subsurface of $S$. Let $\mathcal{C}(S)$ be the curve complex of $S$, $\mathcal{AC}(F)$ be the arc and curve complex of $F$, $\mathcal{D}(H) ⊂ \mathcal{C}(S)$ be the disk complex of $H$ and $π_F (\mathcal{D}(H)) ⊂ \mathcal{AC}(F)$ be the image of $\mathcal{D}(H)$ in $\mathcal{AC}(F)$. We introduce the definition of subsurface 1-distance between the 1-simplices of $\mathcal{AC}(F)$ and show that under some hypothesis, $π_F (\mathcal{D}(H))$ comes within subsurface 1-distance at most 4 of every 1-simplex of $\mathcal{AC}(F)$.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2016.04.09}, url = {http://global-sci.org/intro/article_detail/cmr/18909.html} }For a handlebody $H$ with $∂H = S$, let $F ⊂ S$ be an essential connected subsurface of $S$. Let $\mathcal{C}(S)$ be the curve complex of $S$, $\mathcal{AC}(F)$ be the arc and curve complex of $F$, $\mathcal{D}(H) ⊂ \mathcal{C}(S)$ be the disk complex of $H$ and $π_F (\mathcal{D}(H)) ⊂ \mathcal{AC}(F)$ be the image of $\mathcal{D}(H)$ in $\mathcal{AC}(F)$. We introduce the definition of subsurface 1-distance between the 1-simplices of $\mathcal{AC}(F)$ and show that under some hypothesis, $π_F (\mathcal{D}(H))$ comes within subsurface 1-distance at most 4 of every 1-simplex of $\mathcal{AC}(F)$.