TY - JOUR T1 - Subsurface 1-Distance of the Handlebody AU - Sun , Dongqi JO - Communications in Mathematical Research VL - 4 SP - 375 EP - 382 PY - 2021 DA - 2021/05 SN - 32 DO - http://doi.org/10.13447/j.1674-5647.2016.04.09 UR - https://global-sci.org/intro/article_detail/cmr/18909.html KW - handlebody, curve complex, arc and curve complex, subsurface 1-distance. AB -
For a handlebody $H$ with $∂H = S$, let $F ⊂ S$ be an essential connected subsurface of $S$. Let $\mathcal{C}(S)$ be the curve complex of $S$, $\mathcal{AC}(F)$ be the arc and curve complex of $F$, $\mathcal{D}(H) ⊂ \mathcal{C}(S)$ be the disk complex of $H$ and $π_F (\mathcal{D}(H)) ⊂ \mathcal{AC}(F)$ be the image of $\mathcal{D}(H)$ in $\mathcal{AC}(F)$. We introduce the definition of subsurface 1-distance between the 1-simplices of $\mathcal{AC}(F)$ and show that under some hypothesis, $π_F (\mathcal{D}(H))$ comes within subsurface 1-distance at most 4 of every 1-simplex of $\mathcal{AC}(F)$.