Cited by
- BibTex
- RIS
- TXT
In this paper, a meshless regularization method of fundamental solutions is proposed for a two-dimensional, two-phase linear inverse Stefan problem. The numerical implementation and analysis are challenging since one needs to handle composite materials in higher dimensions. Furthermore, the inverse Stefan problem is ill-posed since small errors in the input data cause large errors in the desired output solution. Therefore, regularization is necessary in order to obtain a stable solution. Numerical results for several benchmark test examples are presented and discussed.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.2013.m77}, url = {http://global-sci.org/intro/article_detail/aamm/98.html} }In this paper, a meshless regularization method of fundamental solutions is proposed for a two-dimensional, two-phase linear inverse Stefan problem. The numerical implementation and analysis are challenging since one needs to handle composite materials in higher dimensions. Furthermore, the inverse Stefan problem is ill-posed since small errors in the input data cause large errors in the desired output solution. Therefore, regularization is necessary in order to obtain a stable solution. Numerical results for several benchmark test examples are presented and discussed.