Adv. Appl. Math. Mech., 1 (2009), pp. 729-749.
Published online: 2009-01
Cited by
- BibTex
- RIS
- TXT
In this article, a level-set approach for solving nonlinear elliptic Cauchy problems with piecewise constant solutions is proposed, which allows the definition of a Tikhonov functional on a space of level-set functions. We provide convergence analysis for the Tikhonov approach, including stability and convergence results. Moreover, a numerical investigation of the proposed Tikhonov regularization method is presented. Newton-type methods are used for the solution of the optimality systems, which can be interpreted as stabilized versions of algorithms in a previous work and yield a substantial improvement in performance. The whole approach is focused on three dimensional models, better suited for real life applications.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.09-m09S03}, url = {http://global-sci.org/intro/article_detail/aamm/8394.html} }In this article, a level-set approach for solving nonlinear elliptic Cauchy problems with piecewise constant solutions is proposed, which allows the definition of a Tikhonov functional on a space of level-set functions. We provide convergence analysis for the Tikhonov approach, including stability and convergence results. Moreover, a numerical investigation of the proposed Tikhonov regularization method is presented. Newton-type methods are used for the solution of the optimality systems, which can be interpreted as stabilized versions of algorithms in a previous work and yield a substantial improvement in performance. The whole approach is focused on three dimensional models, better suited for real life applications.