Cited by
- BibTex
- RIS
- TXT
A parameter-free limiting technique is developed for high-order unstruc- tured-grid methods to capture discontinuities when solving hyperbolic conservation laws. The technique is based on a "troubled-cell" approach, in which cells requiring limiting are first marked, and then a limiter is applied to these marked cells. A parameter-free accuracy-preserving TVD marker based on the cell-averaged solutions and solution derivatives in a local stencil is compared to several other markers in the literature in identifying "troubled cells". This marker is shown to be reliable and efficient to consistently mark the discontinuities. Then a compact high-order hierarchical moment limiter is developed for arbitrary unstructured grids. The limiter preserves a degree $p$ polynomial on an arbitrary mesh. As a result, the solution accuracy near smooth local extrema is preserved. Numerical results for the high-order spectral difference methods are provided to illustrate the accuracy, effectiveness, and robustness of the present limiting technique.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.09-m0913}, url = {http://global-sci.org/intro/article_detail/aamm/8381.html} }A parameter-free limiting technique is developed for high-order unstruc- tured-grid methods to capture discontinuities when solving hyperbolic conservation laws. The technique is based on a "troubled-cell" approach, in which cells requiring limiting are first marked, and then a limiter is applied to these marked cells. A parameter-free accuracy-preserving TVD marker based on the cell-averaged solutions and solution derivatives in a local stencil is compared to several other markers in the literature in identifying "troubled cells". This marker is shown to be reliable and efficient to consistently mark the discontinuities. Then a compact high-order hierarchical moment limiter is developed for arbitrary unstructured grids. The limiter preserves a degree $p$ polynomial on an arbitrary mesh. As a result, the solution accuracy near smooth local extrema is preserved. Numerical results for the high-order spectral difference methods are provided to illustrate the accuracy, effectiveness, and robustness of the present limiting technique.