Cited by
- BibTex
- RIS
- TXT
In the paper, an inf-sup stabilized finite element method by multiscale functions for the Stokes equations is discussed. The key idea is to use a Petrov-Galerkin approach based on the enrichment of the standard polynomial space for the velocity component with multiscale functions. The inf-sup condition for $P_1$-$P_0$ triangular element (or $Q_1$-$P_0$ quadrilateral element) is established. And the optimal error estimates of the stabilized finite element method for the Stokes equations are obtained.
}, issn = {2075-1354}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/aamm/8369.html} }In the paper, an inf-sup stabilized finite element method by multiscale functions for the Stokes equations is discussed. The key idea is to use a Petrov-Galerkin approach based on the enrichment of the standard polynomial space for the velocity component with multiscale functions. The inf-sup condition for $P_1$-$P_0$ triangular element (or $Q_1$-$P_0$ quadrilateral element) is established. And the optimal error estimates of the stabilized finite element method for the Stokes equations are obtained.