Cited by
- BibTex
- RIS
- TXT
Nonlocal continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with micro- or nano-structures. This paper deals with the lateral-torsional buckling of elastic nonlocal small-scale beams. Eringen's model is chosen for the nonlocal constitutive bending-curvature relationship. The effect of prebuckling deformation is taken into consideration on the basis of the Kirchhoff-Clebsch theory. It is shown that the application of Eringen's model produces small-length scale terms in the nonlocal elastic lateral-torsional buckling moment of a hinged-hinged strip beam. Clearly, the non-local parameter has the effect of reducing the critical lateral-torsional buckling moment. This tendency is consistent with the one observed for the in-plane stability analysis, for the lateral buckling of a hinged-hinged axially loaded column. The lateral buckling solution can be derived from a physically motivated variational principle.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.09-m0982}, url = {http://global-sci.org/intro/article_detail/aamm/8337.html} }Nonlocal continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with micro- or nano-structures. This paper deals with the lateral-torsional buckling of elastic nonlocal small-scale beams. Eringen's model is chosen for the nonlocal constitutive bending-curvature relationship. The effect of prebuckling deformation is taken into consideration on the basis of the Kirchhoff-Clebsch theory. It is shown that the application of Eringen's model produces small-length scale terms in the nonlocal elastic lateral-torsional buckling moment of a hinged-hinged strip beam. Clearly, the non-local parameter has the effect of reducing the critical lateral-torsional buckling moment. This tendency is consistent with the one observed for the in-plane stability analysis, for the lateral buckling of a hinged-hinged axially loaded column. The lateral buckling solution can be derived from a physically motivated variational principle.