arrow
Volume 5, Issue 2
A Posteriori Error Estimates of a Combined Mixed Finite Element and Discontinuous Galerkin Method for a Kind of Compressible Miscible Displacement Problems

Jiming Yang & Zhiguang Xiong

Adv. Appl. Math. Mech., 5 (2013), pp. 163-179.

Published online: 2013-05

Export citation
  • Abstract

A kind of compressible miscible displacement problems which include molecular diffusion and dispersion in porous media are investigated. The mixed finite element method is applied to the flow equation, and the transport one is solved by the symmetric interior penalty discontinuous Galerkin method. Based on a duality argument, employing projection estimates and approximation properties, a posteriori residual-type $hp$ error estimates for the coupled system are presented, which is often used for guiding adaptivity. Comparing with the error analysis carried out by Yang (Int. J. Numer. Meth. Fluids, 65(7) (2011), pp. 781-797), the current work is more complicated and challenging.

  • AMS Subject Headings

65M12, 65M60

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{AAMM-5-163, author = {Yang , Jiming and Xiong , Zhiguang}, title = {A Posteriori Error Estimates of a Combined Mixed Finite Element and Discontinuous Galerkin Method for a Kind of Compressible Miscible Displacement Problems}, journal = {Advances in Applied Mathematics and Mechanics}, year = {2013}, volume = {5}, number = {2}, pages = {163--179}, abstract = {

A kind of compressible miscible displacement problems which include molecular diffusion and dispersion in porous media are investigated. The mixed finite element method is applied to the flow equation, and the transport one is solved by the symmetric interior penalty discontinuous Galerkin method. Based on a duality argument, employing projection estimates and approximation properties, a posteriori residual-type $hp$ error estimates for the coupled system are presented, which is often used for guiding adaptivity. Comparing with the error analysis carried out by Yang (Int. J. Numer. Meth. Fluids, 65(7) (2011), pp. 781-797), the current work is more complicated and challenging.

}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.11-m1140}, url = {http://global-sci.org/intro/article_detail/aamm/63.html} }
TY - JOUR T1 - A Posteriori Error Estimates of a Combined Mixed Finite Element and Discontinuous Galerkin Method for a Kind of Compressible Miscible Displacement Problems AU - Yang , Jiming AU - Xiong , Zhiguang JO - Advances in Applied Mathematics and Mechanics VL - 2 SP - 163 EP - 179 PY - 2013 DA - 2013/05 SN - 5 DO - http://doi.org/10.4208/aamm.11-m1140 UR - https://global-sci.org/intro/article_detail/aamm/63.html KW - A posteriori error, discontinuous Galerkin method, compressible miscible displacement, mixed finite element, duality argument. AB -

A kind of compressible miscible displacement problems which include molecular diffusion and dispersion in porous media are investigated. The mixed finite element method is applied to the flow equation, and the transport one is solved by the symmetric interior penalty discontinuous Galerkin method. Based on a duality argument, employing projection estimates and approximation properties, a posteriori residual-type $hp$ error estimates for the coupled system are presented, which is often used for guiding adaptivity. Comparing with the error analysis carried out by Yang (Int. J. Numer. Meth. Fluids, 65(7) (2011), pp. 781-797), the current work is more complicated and challenging.

Yang , Jiming and Xiong , Zhiguang. (2013). A Posteriori Error Estimates of a Combined Mixed Finite Element and Discontinuous Galerkin Method for a Kind of Compressible Miscible Displacement Problems. Advances in Applied Mathematics and Mechanics. 5 (2). 163-179. doi:10.4208/aamm.11-m1140
Copy to clipboard
The citation has been copied to your clipboard