Cited by
- BibTex
- RIS
- TXT
This paper deals with the solvability and the convergence of a class of unsymmetric Meshless Local Petrov-Galerkin (MLPG) method with radial basis function (RBF) kernels generated trial spaces. Local weak-form testings are done with step-functions. It is proved that subject to sufficiently many appropriate testings, solvability of the unsymmetric RBF-MLPG resultant systems can be guaranteed. Moreover, an error analysis shows that this numerical approximation converges at the same rate as found in RBF interpolation. Numerical results (in double precision) give good agreement with the provided theory.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.11-m11168}, url = {http://global-sci.org/intro/article_detail/aamm/58.html} }This paper deals with the solvability and the convergence of a class of unsymmetric Meshless Local Petrov-Galerkin (MLPG) method with radial basis function (RBF) kernels generated trial spaces. Local weak-form testings are done with step-functions. It is proved that subject to sufficiently many appropriate testings, solvability of the unsymmetric RBF-MLPG resultant systems can be guaranteed. Moreover, an error analysis shows that this numerical approximation converges at the same rate as found in RBF interpolation. Numerical results (in double precision) give good agreement with the provided theory.