Adv. Appl. Math. Mech., 15 (2023), pp. 182-201.
Published online: 2022-10
Cited by
- BibTex
- RIS
- TXT
This paper documents the first attempt to apply a localized method of fundamental solutions (LMFS) to the acoustic analysis of car cavity containing sound-absorbing materials. The LMFS is a recently developed meshless approach with the merits of being mathematically simple, numerically accurate, and requiring less computer time and storage. Compared with the traditional method of fundamental solutions (MFS) with a full interpolation matrix, the LMFS can obtain a sparse banded linear algebraic system, and can circumvent the perplexing issue of fictitious boundary encountered in the MFS for complex solution domains. In the LMFS, only circular or spherical fictitious boundary is involved. Based on these advantages, the method can be regarded as a competitive alternative to the standard method, especially for high-dimensional and large-scale problems. Three benchmark numerical examples are provided to verify the effectiveness and performance of the present method for the solution of car cavity acoustic problems with impedance conditions.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.OA-2021-0197}, url = {http://global-sci.org/intro/article_detail/aamm/21131.html} }This paper documents the first attempt to apply a localized method of fundamental solutions (LMFS) to the acoustic analysis of car cavity containing sound-absorbing materials. The LMFS is a recently developed meshless approach with the merits of being mathematically simple, numerically accurate, and requiring less computer time and storage. Compared with the traditional method of fundamental solutions (MFS) with a full interpolation matrix, the LMFS can obtain a sparse banded linear algebraic system, and can circumvent the perplexing issue of fictitious boundary encountered in the MFS for complex solution domains. In the LMFS, only circular or spherical fictitious boundary is involved. Based on these advantages, the method can be regarded as a competitive alternative to the standard method, especially for high-dimensional and large-scale problems. Three benchmark numerical examples are provided to verify the effectiveness and performance of the present method for the solution of car cavity acoustic problems with impedance conditions.