Cited by
- BibTex
- RIS
- TXT
The dual-phase-lag heat transfer model is employed to study the reflection phenomena of $P$ and $SV$ waves from a surface of a semi-infinite magneto-thermoelastic solid. The ratios of reflection coefficients to that of incident coefficients are obtained for $P$- and $SV$-wave cases. The results for partition of the energy for various values of the angle of incidence are computed numerically under the stress-free and rigidly fixed thermally insulated boundaries. The reflection coefficients are depending on the angle of incidence, magnetic field, phase lags and other material constants. Results show that the sum of energy ratios is unity at the interface. The results are discussed and depicted graphically.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.11-m1101}, url = {http://global-sci.org/intro/article_detail/aamm/194.html} }The dual-phase-lag heat transfer model is employed to study the reflection phenomena of $P$ and $SV$ waves from a surface of a semi-infinite magneto-thermoelastic solid. The ratios of reflection coefficients to that of incident coefficients are obtained for $P$- and $SV$-wave cases. The results for partition of the energy for various values of the angle of incidence are computed numerically under the stress-free and rigidly fixed thermally insulated boundaries. The reflection coefficients are depending on the angle of incidence, magnetic field, phase lags and other material constants. Results show that the sum of energy ratios is unity at the interface. The results are discussed and depicted graphically.