Adv. Appl. Math. Mech., 13 (2021), pp. 867-891.
Published online: 2021-04
Cited by
- BibTex
- RIS
- TXT
In this paper, a viscous Cahn-Hilliard equation with logarithmic Flory-Huggins energy potential is solved numerically by using a convex splitting scheme. This numerical scheme is based on the Backward Differentiation Formula (BDF) method in time and mixed finite element method in space. A regularization procedure is applied to logarithmic potential, which makes the domain of the regularized function $F(u)$ to be extended from $(-1,1)$ to $(-\infty,\infty)$. The unconditional energy stability is obtained in the sense that a modified energy is non-increasing. By a carefully theoretical analysis and numerical calculations, we derive discrete error estimates. Subsequently, some numerical examples are carried out to demonstrate the validity of the proposed method.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.OA-2020-0123}, url = {http://global-sci.org/intro/article_detail/aamm/18755.html} }In this paper, a viscous Cahn-Hilliard equation with logarithmic Flory-Huggins energy potential is solved numerically by using a convex splitting scheme. This numerical scheme is based on the Backward Differentiation Formula (BDF) method in time and mixed finite element method in space. A regularization procedure is applied to logarithmic potential, which makes the domain of the regularized function $F(u)$ to be extended from $(-1,1)$ to $(-\infty,\infty)$. The unconditional energy stability is obtained in the sense that a modified energy is non-increasing. By a carefully theoretical analysis and numerical calculations, we derive discrete error estimates. Subsequently, some numerical examples are carried out to demonstrate the validity of the proposed method.