Adv. Appl. Math. Mech., 11 (2019), pp. 1219-1247.
Published online: 2019-06
Cited by
- BibTex
- RIS
- TXT
In this paper, we study a fourth-order quasi-compact conservative difference scheme for solving the fractional Klein-Gordon-Schrödinger equations. The scheme constructed in this work can preserve exactly the discrete charge and energy conservation laws under Dirichlet boundary conditions. By the energy method, the proposed quasi-compact conservative difference scheme is proved to be unconditionally stable and convergent with order $\mathcal{O}(\tau^{2}+h^{4})$ in maximum norm. Finally, several numerical examples are given to confirm the theoretical results.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.OA-2018-0157}, url = {http://global-sci.org/intro/article_detail/aamm/13208.html} }In this paper, we study a fourth-order quasi-compact conservative difference scheme for solving the fractional Klein-Gordon-Schrödinger equations. The scheme constructed in this work can preserve exactly the discrete charge and energy conservation laws under Dirichlet boundary conditions. By the energy method, the proposed quasi-compact conservative difference scheme is proved to be unconditionally stable and convergent with order $\mathcal{O}(\tau^{2}+h^{4})$ in maximum norm. Finally, several numerical examples are given to confirm the theoretical results.