Cited by
- BibTex
- RIS
- TXT
An acceleration scheme based on stationary iterative methods is presented for solving linear system of equations. Unlike Chebyshev semi-iterative method which requires accurate estimation of the bounds for iterative matrix eigenvalues, we use a wide range of Chebyshev-like polynomials for the accelerating process without estimating the bounds of the iterative matrix. A detailed error analysis is presented and convergence rates are obtained. Numerical experiments are carried out and comparisons with classical Jacobi and Chebyshev semi-iterative methods are provided.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.10-m1162}, url = {http://global-sci.org/intro/article_detail/aamm/131.html} }An acceleration scheme based on stationary iterative methods is presented for solving linear system of equations. Unlike Chebyshev semi-iterative method which requires accurate estimation of the bounds for iterative matrix eigenvalues, we use a wide range of Chebyshev-like polynomials for the accelerating process without estimating the bounds of the iterative matrix. A detailed error analysis is presented and convergence rates are obtained. Numerical experiments are carried out and comparisons with classical Jacobi and Chebyshev semi-iterative methods are provided.