Adv. Appl. Math. Mech., 9 (2017), pp. 144-156.
Published online: 2018-05
Cited by
- BibTex
- RIS
- TXT
In this paper, He's homotopy perturbation method is utilized to obtain the analytical solution for the nonlinear natural frequency of functionally graded nanobeam. The functionally graded nanobeam is modeled using the Eringen's nonlocal elasticity theory based on Euler-Bernoulli beam theory with von Karman nonlinearity relation. The boundary conditions of problem are considered with both sides simply supported and simply supported-clamped. The Galerkin's method is utilized to decrease the nonlinear partial differential equation to a nonlinear second-order ordinary differential equation. Based on numerical results, homotopy perturbation method convergence is illustrated. According to obtained results, it is seen that the second term of the homotopy perturbation method gives extremely precise solution.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.2015.m899}, url = {http://global-sci.org/intro/article_detail/aamm/12141.html} }In this paper, He's homotopy perturbation method is utilized to obtain the analytical solution for the nonlinear natural frequency of functionally graded nanobeam. The functionally graded nanobeam is modeled using the Eringen's nonlocal elasticity theory based on Euler-Bernoulli beam theory with von Karman nonlinearity relation. The boundary conditions of problem are considered with both sides simply supported and simply supported-clamped. The Galerkin's method is utilized to decrease the nonlinear partial differential equation to a nonlinear second-order ordinary differential equation. Based on numerical results, homotopy perturbation method convergence is illustrated. According to obtained results, it is seen that the second term of the homotopy perturbation method gives extremely precise solution.