Adv. Appl. Math. Mech., 9 (2017), pp. 104-124.
Published online: 2018-05
Cited by
- BibTex
- RIS
- TXT
Semi-Lagrangian (S-L) methods have no CFL stability constraint, and are more stable than the Eulerian methods. In the literature, the S-L method for the level-set re-initialization equation was complicated, which may be unnecessary. Since the re-initialization procedure is auxiliary, we propose to use the first-order S-L scheme coupled with a projection technique to improve the accuracy at the grid points just adjacent to the interface. Standard second-order S-L method is used for evolving the level-set convection equation. The implementation is simple, including on the block-structured adaptive mesh. The efficiency of the S-L method is demonstrated by extensive numerical examples including passive convection of interfaces with corners/kinks/large deformation under given velocity fields, a geometrical flow with topological changes, simulations of bubble/ droplet dynamics in incompressible two-phase flows. In terms of accuracy it is comparable to the other existing methods.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.2015.m1305}, url = {http://global-sci.org/intro/article_detail/aamm/12139.html} }Semi-Lagrangian (S-L) methods have no CFL stability constraint, and are more stable than the Eulerian methods. In the literature, the S-L method for the level-set re-initialization equation was complicated, which may be unnecessary. Since the re-initialization procedure is auxiliary, we propose to use the first-order S-L scheme coupled with a projection technique to improve the accuracy at the grid points just adjacent to the interface. Standard second-order S-L method is used for evolving the level-set convection equation. The implementation is simple, including on the block-structured adaptive mesh. The efficiency of the S-L method is demonstrated by extensive numerical examples including passive convection of interfaces with corners/kinks/large deformation under given velocity fields, a geometrical flow with topological changes, simulations of bubble/ droplet dynamics in incompressible two-phase flows. In terms of accuracy it is comparable to the other existing methods.