Adv. Appl. Math. Mech., 8 (2016), pp. 971-991.
Published online: 2018-05
Cited by
- BibTex
- RIS
- TXT
In this paper, we focus on graphical processing unit (GPU) and discuss how its architecture affects the choice of algorithm and implementation of fully-implicit petroleum reservoir simulation. In order to obtain satisfactory performance on new many-core architectures such as GPUs, the simulator developers must know a great deal on the specific hardware and spend a lot of time on fine tuning the code. Porting a large petroleum reservoir simulator to emerging hardware architectures is expensive and risky. We analyze major components of an in-house reservoir simulator and investigate how to port them to GPUs in a cost-effective way. Preliminary numerical experiments show that our GPU-based simulator is robust and effective. More importantly, these numerical results clearly identify the main bottlenecks to obtain ideal speedup on GPUs and possibly other many-core architectures.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.2015.m1138}, url = {http://global-sci.org/intro/article_detail/aamm/12126.html} }In this paper, we focus on graphical processing unit (GPU) and discuss how its architecture affects the choice of algorithm and implementation of fully-implicit petroleum reservoir simulation. In order to obtain satisfactory performance on new many-core architectures such as GPUs, the simulator developers must know a great deal on the specific hardware and spend a lot of time on fine tuning the code. Porting a large petroleum reservoir simulator to emerging hardware architectures is expensive and risky. We analyze major components of an in-house reservoir simulator and investigate how to port them to GPUs in a cost-effective way. Preliminary numerical experiments show that our GPU-based simulator is robust and effective. More importantly, these numerical results clearly identify the main bottlenecks to obtain ideal speedup on GPUs and possibly other many-core architectures.