Adv. Appl. Math. Mech., 9 (2017), pp. 1383-1403.
Published online: 2017-09
Cited by
- BibTex
- RIS
- TXT
This paper introduces two novel conformal structure-preserving algorithms for solving the coupled damped nonlinear Schrödinger (CDNLS) system, which are based on the conformal multi-symplectic Hamiltonian formulation and its conformal conservation laws. The proposed algorithms can preserve corresponding conformal multi-symplectic conservation law and conformal momentum conservation law in any local time-space region, respectively. Moreover, it is further shown that the algorithms admit the conformal charge conservation law, and exactly preserve the dissipation rate of charge under appropriate boundary conditions. Numerical experiments are presented to demonstrate the conformal properties and effectiveness of the proposed algorithms during long-time numerical simulations and validate the analysis.
}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.OA-2016-0164}, url = {http://global-sci.org/intro/article_detail/aamm/10184.html} }This paper introduces two novel conformal structure-preserving algorithms for solving the coupled damped nonlinear Schrödinger (CDNLS) system, which are based on the conformal multi-symplectic Hamiltonian formulation and its conformal conservation laws. The proposed algorithms can preserve corresponding conformal multi-symplectic conservation law and conformal momentum conservation law in any local time-space region, respectively. Moreover, it is further shown that the algorithms admit the conformal charge conservation law, and exactly preserve the dissipation rate of charge under appropriate boundary conditions. Numerical experiments are presented to demonstrate the conformal properties and effectiveness of the proposed algorithms during long-time numerical simulations and validate the analysis.