第十二卷, 第一期
三维流形多吗?

刘 毅

数学文化, 12 (2021), pp. 54-62.

查看节选 购买查看 505 40631
  • 摘要

image.png

人们认识流形,先于知道它的名字。放大镜下的蚕丝不会被当成蛛网,因为它处处都像线段。在玻璃球、玉镯表面,蚂蚁看着附近都像小的圆盘。我们所观瞻过的太空,无处不像立方体的内部,三维张布,尽管不能由此推断宇宙的形状。数学上,流形(manifold)正是指一类广泛的拓扑空间,它的局部总与某维数的欧氏空间相互同胚。

从庞加莱(Henri Poincaré)为之奠基的时代起,拓扑学就致力于流形的分类。维数从此造成关键的影响。百余年过去,今天的我们知道有一道认识的分水岭,横亘三维、四维之间。低维这侧是大体清晰的理论可计算图景,高维之外是原则上不可能解决的、更辽阔的未知。

本文打算以分类课题为叙事,介绍三维流形的几何化纲领,并且提及它所影响的低维拓扑在后来的重要发展。