Volume 2, Issue 4
Embedding Inequalities for Barron-Type Spaces

Lei Wu

J. Mach. Learn. , 2 (2023), pp. 259-270.

Published online: 2023-12

[An open-access article; the PDF is free to any online user.]

Export citation
  • Abstract

An important problem in machine learning theory is to understand the approximation and generalization properties of two-layer neural networks in high dimensions. To this end, researchers have introduced the Barron space $\mathcal{B}_s(Ω)$ and the spectral Barron space $\mathcal{F}_s(Ω),$ where the index $s ∈ [0, ∞)$ indicates the smoothness of functions within these spaces and $Ω ⊂ \mathbb{R}^d$ denotes the input domain. However, the precise relationship between the two types of Barron spaces remains unclear. In this paper, we establish a continuous embedding between them as implied by the following inequality: For any $\delta∈ (0, 1),s ∈ \mathbb{N}^+$ and $f : Ω\mapsto \mathbb{R},$ it holds that $$\delta||f||_{\mathcal{F}_{s−\delta}(Ω)}\lesssim_s||f||_{\mathcal{B}_s(Ω)}\lesssim_s||f||_{\mathcal{F}_{s+1}(Ω).}$$ Importantly, the constants do not depend on the input dimension $d,$ suggesting that the embedding is effective in high dimensions. Moreover, we also show that the lower and upper bound are both tight.

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JML-2-259, author = {Wu , Lei}, title = {Embedding Inequalities for Barron-Type Spaces}, journal = {Journal of Machine Learning}, year = {2023}, volume = {2}, number = {4}, pages = {259--270}, abstract = {

An important problem in machine learning theory is to understand the approximation and generalization properties of two-layer neural networks in high dimensions. To this end, researchers have introduced the Barron space $\mathcal{B}_s(Ω)$ and the spectral Barron space $\mathcal{F}_s(Ω),$ where the index $s ∈ [0, ∞)$ indicates the smoothness of functions within these spaces and $Ω ⊂ \mathbb{R}^d$ denotes the input domain. However, the precise relationship between the two types of Barron spaces remains unclear. In this paper, we establish a continuous embedding between them as implied by the following inequality: For any $\delta∈ (0, 1),s ∈ \mathbb{N}^+$ and $f : Ω\mapsto \mathbb{R},$ it holds that $$\delta||f||_{\mathcal{F}_{s−\delta}(Ω)}\lesssim_s||f||_{\mathcal{B}_s(Ω)}\lesssim_s||f||_{\mathcal{F}_{s+1}(Ω).}$$ Importantly, the constants do not depend on the input dimension $d,$ suggesting that the embedding is effective in high dimensions. Moreover, we also show that the lower and upper bound are both tight.

}, issn = {2790-2048}, doi = {https://doi.org/10.4208/jml.230530}, url = {http://global-sci.org/intro/article_detail/jml/22307.html} }
TY - JOUR T1 - Embedding Inequalities for Barron-Type Spaces AU - Wu , Lei JO - Journal of Machine Learning VL - 4 SP - 259 EP - 270 PY - 2023 DA - 2023/12 SN - 2 DO - http://doi.org/10.4208/jml.230530 UR - https://global-sci.org/intro/article_detail/jml/22307.html KW - Barron space, Two-layer neural network, High-dimensional approximation, Embedding theorem, Fourier transform. AB -

An important problem in machine learning theory is to understand the approximation and generalization properties of two-layer neural networks in high dimensions. To this end, researchers have introduced the Barron space $\mathcal{B}_s(Ω)$ and the spectral Barron space $\mathcal{F}_s(Ω),$ where the index $s ∈ [0, ∞)$ indicates the smoothness of functions within these spaces and $Ω ⊂ \mathbb{R}^d$ denotes the input domain. However, the precise relationship between the two types of Barron spaces remains unclear. In this paper, we establish a continuous embedding between them as implied by the following inequality: For any $\delta∈ (0, 1),s ∈ \mathbb{N}^+$ and $f : Ω\mapsto \mathbb{R},$ it holds that $$\delta||f||_{\mathcal{F}_{s−\delta}(Ω)}\lesssim_s||f||_{\mathcal{B}_s(Ω)}\lesssim_s||f||_{\mathcal{F}_{s+1}(Ω).}$$ Importantly, the constants do not depend on the input dimension $d,$ suggesting that the embedding is effective in high dimensions. Moreover, we also show that the lower and upper bound are both tight.

Wu , Lei. (2023). Embedding Inequalities for Barron-Type Spaces. Journal of Machine Learning. 2 (4). 259-270. doi:10.4208/jml.230530
Copy to clipboard
The citation has been copied to your clipboard