- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Continuous Spectrum for a Class of Smooth Mixing CMV Matrices
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMR-41-25,
author = {Peng , Yaxin},
title = {Continuous Spectrum for a Class of Smooth Mixing CMV Matrices},
journal = {Communications in Mathematical Research },
year = {2025},
volume = {41},
number = {1},
pages = {25--29},
abstract = {
This note proves that the extended CMV matrices with Verblunsky coefficient that is generated by a smooth volume preserving mixing dynamical system and a Hölder sampling function have almost surely continuous spectrum.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2024-0022}, url = {http://global-sci.org/intro/article_detail/cmr/23928.html} }
TY - JOUR
T1 - Continuous Spectrum for a Class of Smooth Mixing CMV Matrices
AU - Peng , Yaxin
JO - Communications in Mathematical Research
VL - 1
SP - 25
EP - 29
PY - 2025
DA - 2025/03
SN - 41
DO - http://doi.org/10.4208/cmr.2024-0022
UR - https://global-sci.org/intro/article_detail/cmr/23928.html
KW - CMV matrix, continuous spectrum, Gordon lemma, super-recurrent.
AB -
This note proves that the extended CMV matrices with Verblunsky coefficient that is generated by a smooth volume preserving mixing dynamical system and a Hölder sampling function have almost surely continuous spectrum.
Peng , Yaxin. (2025). Continuous Spectrum for a Class of Smooth Mixing CMV Matrices.
Communications in Mathematical Research . 41 (1).
25-29.
doi:10.4208/cmr.2024-0022
Copy to clipboard