- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
In this paper we prove that the Gromov-Hausdorff distance between $\mathbb{R}^n$ and its subset $A$ is finite if and only if $A$ is an $ε$-net in $\mathbb{R}^n$ for some $ε > 0.$ For infinite-dimensional Euclidean spaces this is not true. The proof is essentially based on upper estimate of the Euclidean Gromov-Hausdorff distance by means of the Gromov-Hausdorff distance.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2024-0041}, url = {http://global-sci.org/intro/article_detail/cmr/23926.html} }In this paper we prove that the Gromov-Hausdorff distance between $\mathbb{R}^n$ and its subset $A$ is finite if and only if $A$ is an $ε$-net in $\mathbb{R}^n$ for some $ε > 0.$ For infinite-dimensional Euclidean spaces this is not true. The proof is essentially based on upper estimate of the Euclidean Gromov-Hausdorff distance by means of the Gromov-Hausdorff distance.