- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
In this paper, we prove the global existence and uniqueness of solutions for the inhomogeneous Navier-Stokes equations with the initial data $(\rho_0,u_0)\in L^∞\times H^s_0$, $s>\frac{1}{2}$ and $||u_0||_{H^s_0}\leq \varepsilon_0$ in bounded domain $\Omega \subset \mathbb{R}^3$, in which the density is assumed to be nonnegative. The regularity of initial data is weaker than the previous $(\rho_0,u_0)\in (W^{1,\gamma}∩L^∞)\times H^1_0$ in [13] and $(\rho_0,u_0)\in L^∞\times H^1_0$ in [7], which constitutes a positive answer to the question raised by Danchin and Mucha in [7]. The methods used in this paper are mainly the classical time weighted energy estimate and Lagrangian approach, and the continuity argument and shift of integrability method are applied to complete our proof.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2021-0034}, url = {http://global-sci.org/intro/article_detail/cmr/21079.html} }In this paper, we prove the global existence and uniqueness of solutions for the inhomogeneous Navier-Stokes equations with the initial data $(\rho_0,u_0)\in L^∞\times H^s_0$, $s>\frac{1}{2}$ and $||u_0||_{H^s_0}\leq \varepsilon_0$ in bounded domain $\Omega \subset \mathbb{R}^3$, in which the density is assumed to be nonnegative. The regularity of initial data is weaker than the previous $(\rho_0,u_0)\in (W^{1,\gamma}∩L^∞)\times H^1_0$ in [13] and $(\rho_0,u_0)\in L^∞\times H^1_0$ in [7], which constitutes a positive answer to the question raised by Danchin and Mucha in [7]. The methods used in this paper are mainly the classical time weighted energy estimate and Lagrangian approach, and the continuity argument and shift of integrability method are applied to complete our proof.