- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
Consider a kind of Hermit interpolation for scattered data of 3D by trivariate polynomial natural spline, such that the objective energy functional (with natural boundary conditions) is minimal. By the spline function methods in Hilbert space and variational theory of splines, the characters of the interpolation solution and how to construct it are studied. One can easily find that the interpolation solution is a trivariate polynomial natural spline. Its expression is simple and the coefficients can be decided by a linear system. Some numerical examples are presented to demonstrate our methods.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19059.html} }Consider a kind of Hermit interpolation for scattered data of 3D by trivariate polynomial natural spline, such that the objective energy functional (with natural boundary conditions) is minimal. By the spline function methods in Hilbert space and variational theory of splines, the characters of the interpolation solution and how to construct it are studied. One can easily find that the interpolation solution is a trivariate polynomial natural spline. Its expression is simple and the coefficients can be decided by a linear system. Some numerical examples are presented to demonstrate our methods.