- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
Given an irreducible plane algebraic curve of degree $d ≥ 3$, we compute its numerical singular points, determine their multiplicities, and count the number of distinct tangents at each to decide whether the singular points are ordinary. The numerical procedures rely on computing numerical solutions of polynomial systems by homotopy continuation method and a reliable method that calculates multiple roots of the univariate polynomials accurately using standard machine precision. It is completely different from the traditional symbolic computation and provides singular points and their related properties of some plane algebraic curves that the symbolic software Maple cannot work out. Without using multiprecision arithmetic, extensive numerical experiments show that our numerical procedures are accurate, efficient and robust, even if the coefficients of plane algebraic curves are inexact.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19057.html} }Given an irreducible plane algebraic curve of degree $d ≥ 3$, we compute its numerical singular points, determine their multiplicities, and count the number of distinct tangents at each to decide whether the singular points are ordinary. The numerical procedures rely on computing numerical solutions of polynomial systems by homotopy continuation method and a reliable method that calculates multiple roots of the univariate polynomials accurately using standard machine precision. It is completely different from the traditional symbolic computation and provides singular points and their related properties of some plane algebraic curves that the symbolic software Maple cannot work out. Without using multiprecision arithmetic, extensive numerical experiments show that our numerical procedures are accurate, efficient and robust, even if the coefficients of plane algebraic curves are inexact.