- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
Let $\mathcal{g}$ be the general linear Lie algebra consisting of all $n × n$ matrices over a field $F$ and with the usual bracket operation $[x, y] = xy − yx$. An invertible map $φ : \mathcal{g} → \mathcal{g}$ is said to preserve staircase subalgebras if it maps every staircase subalgebra to some staircase subalgebra of the same dimension. In this paper, we devote to giving an explicit description on the invertible maps on $\mathcal{g}$ that preserve staircase subalgebras.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19046.html} }Let $\mathcal{g}$ be the general linear Lie algebra consisting of all $n × n$ matrices over a field $F$ and with the usual bracket operation $[x, y] = xy − yx$. An invertible map $φ : \mathcal{g} → \mathcal{g}$ is said to preserve staircase subalgebras if it maps every staircase subalgebra to some staircase subalgebra of the same dimension. In this paper, we devote to giving an explicit description on the invertible maps on $\mathcal{g}$ that preserve staircase subalgebras.