Cited by
- BibTex
- RIS
- TXT
In this paper, we study a nonlinear parabolic system with variable exponents. The existence of classical solutions to an initial and boundary value problem is obtained by a fixed point theorem of the contraction mapping, and the blow-up property of solutions in finite time is obtained with the help of the eigenfunction of the Laplace equation and a delicate estimate.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19029.html} }In this paper, we study a nonlinear parabolic system with variable exponents. The existence of classical solutions to an initial and boundary value problem is obtained by a fixed point theorem of the contraction mapping, and the blow-up property of solutions in finite time is obtained with the help of the eigenfunction of the Laplace equation and a delicate estimate.