- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
We investigate the M-eigenvalues of the Riemann curvature tensor in the higher dimensional conformally flat manifold. The expressions of M-eigenvalues and M-eigenvectors are presented in this paper. As a special case, M-eigenvalues of conformal flat Einstein manifold have also been discussed, and the conformal the invariance of M-eigentriple has been found. We also reveal the relationship between M-eigenvalue and sectional curvature of a Riemannian manifold. We prove that the M-eigenvalue can determine the Riemann curvature tensor uniquely. We also give an example to compute the M-eigentriple of de Sitter spacetime which is well-known in general relativity.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2020-0052}, url = {http://global-sci.org/intro/article_detail/cmr/17852.html} }We investigate the M-eigenvalues of the Riemann curvature tensor in the higher dimensional conformally flat manifold. The expressions of M-eigenvalues and M-eigenvectors are presented in this paper. As a special case, M-eigenvalues of conformal flat Einstein manifold have also been discussed, and the conformal the invariance of M-eigentriple has been found. We also reveal the relationship between M-eigenvalue and sectional curvature of a Riemannian manifold. We prove that the M-eigenvalue can determine the Riemann curvature tensor uniquely. We also give an example to compute the M-eigentriple of de Sitter spacetime which is well-known in general relativity.