Commun. Math. Res., 35 (2019), pp. 139-148.
Published online: 2019-12
Cited by
- BibTex
- RIS
- TXT
This paper deals with the Hyers-Ulam stability of the nonhomogeneous linear dynamic equation $x^{\Delta}(t)-a x(t)=f(t)$, where $a\in\mathcal{R}^{+}$. The main results can be regarded as a supplement of the stability results of the corresponding homogeneous linear dynamic equation obtained by Anderson and Onitsuka (Anderson D R, Onitsuka M. Hyers-Ulam stability of first-order homogeneous linear dynamic equations on time scales. $Demonstratio$ $Math$., 2018, 51: 198–210).
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2019.02.05}, url = {http://global-sci.org/intro/article_detail/cmr/13484.html} }This paper deals with the Hyers-Ulam stability of the nonhomogeneous linear dynamic equation $x^{\Delta}(t)-a x(t)=f(t)$, where $a\in\mathcal{R}^{+}$. The main results can be regarded as a supplement of the stability results of the corresponding homogeneous linear dynamic equation obtained by Anderson and Onitsuka (Anderson D R, Onitsuka M. Hyers-Ulam stability of first-order homogeneous linear dynamic equations on time scales. $Demonstratio$ $Math$., 2018, 51: 198–210).