TY - JOUR T1 - Superconvergence Analysis for the Stable Conforming Rectangular Mixed Finite Elements for the Linear Elasticity Problem AU - Dongyang Shi & Minghao Li JO - Journal of Computational Mathematics VL - 2 SP - 205 EP - 214 PY - 2014 DA - 2014/04 SN - 32 DO - http://doi.org/10.4208/jcm.1401-m3837 UR - https://global-sci.org/intro/article_detail/jcm/9879.html KW - Elasticity, Supercloseness, Global superconvergence. AB -

In this paper, we consider the linear elasticity problem based on the Hellinger-Reissner variational principle. An $\mathcal{O}(h^2)$ order superclose property for the stress and displacement and a global superconvergence result of the displacement are established by employing a Clément interpolation, an integral identity and appropriate postprocessing techniques.