TY - JOUR T1 - Anisotropic Crouzeix-Raviart Type Nonconforming Finite Element Methods to Variational Inequality Problem with Displacement Obstacle AU - Shi , Dongyang AU - Wang , Caixia AU - Tang , Qili JO - Journal of Computational Mathematics VL - 1 SP - 86 EP - 99 PY - 2015 DA - 2015/02 SN - 33 DO - http://doi.org/10.4208/jcm.1406-m4309 UR - https://global-sci.org/intro/article_detail/jcm/9828.html KW - Crouzeix-Raviart type nonconforming finite elements, Anisotropy, Variational inequality, Displacement obstacle, Optimal order error estimates. AB -
In this paper, anisotropic Crouzeix-Raviart type nonconforming finite element methods are considered for solving the second order variational inequality with displacement obstacle. The convergence analysis is presented and the optimal order error estimates are obtained under the hypothesis of the finite length of the free boundary. Numerical results are provided to illustrate the correctness of theoretical analysis.