TY - JOUR T1 - On Convergence Property of the Lanczos Method for Solving a Complex Shifted Hermitian Linear System AU - Guiding Gu JO - Journal of Computational Mathematics VL - 3 SP - 326 EP - 334 PY - 2013 DA - 2013/06 SN - 31 DO - http://doi.org/10.4208/jcm.1212-m4186 UR - https://global-sci.org/intro/article_detail/jcm/9737.html KW - Hermitian matrix, Complex shifted linear system, Lanczos method. AB -

We discuss the convergence property of the Lanczos method for solving a complex shifted Hermitian linear system $(α I + H)x = f$. By showing the colinear coefficient of two system's residuals, our convergence analysis reveals that under the condition $Re(α)+ λ _{min}(H)>0$, the method converges faster than that for the real shifted Hermitian linear system $(Re(α) I+H)x=f$. Numerical experiments verify such convergence property.