TY - JOUR T1 - Coercivity of the Single Layer Heat Potential AU - Douglas N. Arnold & Patrick J. Noon JO - Journal of Computational Mathematics VL - 2 SP - 100 EP - 104 PY - 1989 DA - 1989/07 SN - 7 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/9459.html KW - AB -
The single layer heat potential operator, K, arises in the solution of initial-boundary value problems for the heat equation using boundary integral methods. In this note we show that K maps a certain anisotropic Sobolev space isomorphically onto its dual, and, moreover, satisfies the coercivity inequality $ < K_{q,q} >\geq c\|q\|^2$. We thereby establish the well-posedness of the operator equation $K_q=f$ and provide a basis for the analysis of the discretizations.