TY - JOUR T1 - A Spectral Method for a Class of System of Multi-Dimensional Nonlinear Wave Equations AU - Xin-Min Xiang JO - Journal of Computational Mathematics VL - 1 SP - 41 EP - 55 PY - 1989 DA - 1989/07 SN - 7 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/9454.html KW - AB -
In [1,2], the problem of three-dimensional soliton of a class of system for three-dimensional nonlinear wave equations was investigated, and the existence and stability of three-dimensional soliton was proved. In [3] the system discusses in [1,2] was generalized and a more general class of system of multi-dimensional nonlinear wave equations were studied. It was proved that the solution of its initial-boundary value problem was well posed under some conditions. This system has been studied by the finite difference method and the finite element method [4,5]. In this paper, we take the trigonometric functions as a basis to derive a spectral method for the system and give a strict error analysis in theory.