TY - JOUR T1 - Convergence and Superconvergence of Hermite Bicubic Element for Eigenvalue Problem of the Biharmonic Equation AU - Wu , Dong-Sheng JO - Journal of Computational Mathematics VL - 2 SP - 139 EP - 142 PY - 2001 DA - 2001/04 SN - 19 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/8965.html KW - Hermite bicubic element, Biharmonic equation, Interpolation postprocessing, Eigenvalue problem. AB -
In this paper,we discuss the convergence and superconvergence for eigenvalue problem of the biharmonic equation by using the Hermite bicubic element. Based on asymptotic error expansions and interpolation postprocessing, we gain the following estimation: $$0 \le \bar{\lambda}_h - \lambda \le C_\epsilon h^{8-\epsilon}$$ where $\epsilon>0$ is an arbitrary small positive number and $C_\epsilon >0$ is a constant.