TY - JOUR T1 - Non $C^0$ Nonconforming Elements for Elliptic Fourth Order Singular Perturbation Problem AU - Shao-Chun Chen, Yong-Cheng Zhao & Dong-Yang Shi JO - Journal of Computational Mathematics VL - 2 SP - 185 EP - 198 PY - 2005 DA - 2005/04 SN - 23 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/8806.html KW - Singular perturbation problem, Nonconforming element, Double set parameter method. AB -
In this paper we give a convergence theorem for non $C^0$ nonconforming finite element to solve the elliptic fourth order singular perturbation problem. Two such kinds of elements, a nine parameter triangular element and a twelve parameter rectangular element both with double set parameters, are presented. The convergence and numerical results of the two elements are given.