TY - JOUR T1 - Symmetric Energy-Conserved Splitting FDTD Scheme for the Maxwell's Equations AU - Wenbin Chen, Xingjie Li & Dong Liang JO - Communications in Computational Physics VL - 4 SP - 804 EP - 825 PY - 2009 DA - 2009/06 SN - 6 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cicp/7707.html KW - AB -

In this paper, a new symmetric energy-conserved splitting FDTD scheme (symmetric EC-S-FDTD) for Maxwell's equations is proposed. The new algorithm inherits the same properties of our previous EC-S-FDTDI and EC-S-FDTDII algorithms: energy-conservation, unconditional stability and computational efficiency. It keeps the same computational complexity as the EC-S-FDTDI scheme and is of second-order accuracy in both time and space as the EC-S-FDTDII scheme. The convergence and error estimate of the symmetric EC-S-FDTD scheme are proved rigorously by the energy method and are confirmed by numerical experiments.