TY - JOUR T1 - Superconvergence and Asymptotic Expansions for Bilinear Finite Volume Element Approximations AU - Cunyun Nie, Shi Shu, Haiyuan Yu & Juan Wu JO - Numerical Mathematics: Theory, Methods and Applications VL - 2 SP - 408 EP - 423 PY - 2013 DA - 2013/06 SN - 6 DO - http://doi.org/10.4208/nmtma.2013.1127nm UR - https://global-sci.org/intro/article_detail/nmtma/5911.html KW - Isoparametric bilinear finite volume element scheme, asymptotic expansion, high accuracy combination formula, superconvergence. AB -

Aiming at the isoparametric bilinear finite volume element scheme, we initially derive an asymptotic expansion and a high accuracy  combination formula of the derivatives in the sense of pointwise by employing the energy-embedded method on uniform grids. Furthermore, we prove that the approximate derivatives are convergent of order two. Finally, numerical examples verify the theoretical results.