TY - JOUR T1 - Product Gaussian Quadrature on Circular Lunes AU - Gaspare Da Fies & Marco Vianello JO - Numerical Mathematics: Theory, Methods and Applications VL - 2 SP - 251 EP - 264 PY - 2014 DA - 2014/07 SN - 7 DO - http://doi.org/10.4208/nmtma.2014.1319nm UR - https://global-sci.org/intro/article_detail/nmtma/5874.html KW - Product Gaussian quadrature, subperiodic trigonometric quadrature, circular lunes. AB -

Resorting to recent results on subperiodic trigonometric quadrature, we provide three product Gaussian quadrature formulas exact on algebraic polynomials of degree $n$ on circular lunes. The first works on any lune, and has $n^2 + \mathcal{O}(n)$ cardinality. The other two have restrictions on the lune angular intervals, but their cardinality is $n^2/2 + \mathcal{O}(n)$.