TY - JOUR T1 - Analysis of the Discontinuous Galerkin Interior Penalty Method with Solenoidal Approximations for the Stokes Equations AU - A. Montlaur & S. Fernandez-Mendez JO - International Journal of Numerical Analysis and Modeling VL - 4 SP - 715 EP - 725 PY - 2014 DA - 2014/11 SN - 11 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/ijnam/548.html KW - Discontinuous Galerkin, Stokes equations, incompressible flow, divergence-free, Interior Penalty Method, error bounds. AB -
The discontinuous Galerkin Interior Penalty Method with solenoidal approximations proposed in [13] for the incompressible Stokes equations is analyzed. Continuity and coercivity of the bilinear form are proved. A priori error estimates, with optimal convergence rates, are derived. 2D and 3D numerical examples with known analytical solution corroborate the theoretical analysis.